13 December 2019

Prototyping at component-level

As part of the related research topic focusing on the design, fabrication and validation of analog components for wireless communications and sensors for vertical applications, we have developed a rich prototyping activity in the context of funded projects (please see the page of the research topic for more information) and ad-hoc collaborations with academic institutions and companies. In the following, you may see some indicative figures of designed components and also a detailed flow-graph of the design methodology. Finally, we present a list of the fabrication methods and a table of the instruments, utilities and facilities available for this prototyping activity.

 

Prototyping at component-level: for communication systems & sensors


 Ignacio_prototyping_fig1

Ignacio_prototyping_fig2 

 Ignacio_prototyping_fig3

Ignacio_prototyping_fig4

 

Device implementation methodology

Ignacio_methodology

 

Implementation starts with the specifications to be achieved by the device, the projected performance is obtained through calculations and simulations, mainly performed using commercial software. Technology selection is carried out according to device specifications, e.g. size and performance goals. Fully fabricated devices are then tested in the laboratory.

 

Fabrication methods used

  • Micro/nano technology
  • Microelectromechanical systems
  • 3D printing
  • 2D Inkjet printing
  • Printed circuit board
  • Superconducting circuits
  • Low temperature cofired ceramics

 

Detailed list of the instruments, utilities and facilities available for this prototyping activity

Equipment Brand Model Additional information
Probe station SÜSS Microtec PA-200 Semiautomatic

Up to 220 GHz

Bonding machine Kulikce&Soffa 4523 Gold and aluminum
Temperature and humidity chamber Angelantoni CH250C Capacity: 224 liters.

Temp.: -40º – 180º Humidity: 10% – 98%

Vector network analyzer Agilent E8361A Two ports

Up to 67 GHz

Vector network analyzer Rohde&Schwarz ZVA24 Four ports

Up to 24 GHz

Signal generator PSG Agilent E8257D Up to 20 GHz
Signal generator   PSG CW Agilent E8247C Up to 40 GHz
Spectrum analyzer Agilent E4445A Up to 13 GHz
Spectrum analyzer Agilent E4448A Up to 50 GHz
Portable spectrum analyzer Rohde&Schwarz FSH6 Up to 6 GHz
Oscilloscope Agilent Infiniium DSO 81004 Up to 10 GHz
Pulse generator Picosecond 10,050 A Response time: 45 ps Amplitude: 10 V

Pulses 100 ps – 10 ns

Power supply Agilent N6700B 4 slots

400 W

Dual power supplies Agilent E3648A 100 W
Dual power supplies Agilent E3646A 60 W
Anechoic chamber ETL-LINDGREN S501 0.7-18 GHz
Horn reference antennas ETS-LINDGREN 3160-0x 0.96-18 GHz
Dual polarization wideband horn antenna ETS-LINDGREN 3164-04 0.7-6 GHz
Dual polarization wideband horn antenna ETS-LINDGREN 3164-05 2-18 GHz
Prototyping machine LPKF C100HF CNC type machine
Prototyping machine LPKF ProtoMat S100 Laser based machine
Inkjet 2D printer FujiFilm Dimatix Material printer
SLA 3D printer Monoprinter Monoprinter2 3D resin printer
Spectrometer NanoSPR NanoSPR7 650 nm wavelength

 

 

 

As part of the related research topic focusing on the design, fabrication and validation of analog components for wireless communications and sensors for vertical applications, we have developed a rich prototyping activity in the context of funded projects (please see the page of the research topic for more information) and ad-hoc collaborations with academic institutions and companies. In the following, you may see some indicative figures of designed components and also a detailed flow-graph of the design methodology. Finally, we present a list of the fabrication methods and a table of the instruments, utilities and facilities available for this prototyping activity.

Prototyping at component-level: for communication systems & sensors

 

 

 

 

Imagen que contiene texto, mapa</p>
<p>Descripción generada automáticamente

 

 

Imagen que contiene copa, café, mesa, interior</p>
<p>Descripción generada automáticamente

Device implementation methodology

Imagen que contiene captura de pantalla, señal</p>
<p>Descripción generada automáticamente

Implementation starts with the specifications to be achieved by the device, the projected performance is obtained through calculations and simulations, mainly performed using commercial software. Technology selection is carried out according to device specifications, e.g. size and performance goals. Fully fabricated devices are then tested in the laboratory.

Fabrication methods used

·         Micro/nano technology

·         Microelectromechanical systems

·         3D printing

·         2D Inkjet printing

·         Printed circuit board

·         Superconducting circuits

·         Low temperature cofired ceramics

 

Detailed list of the instruments, utilities and facilities available for this prototyping activity

Equipment

Brand

Model

Additional information

Probe station

SÜSS Microtec

PA-200

Semiautomatic

Up to 220 GHz

Bonding machine

Kulikce&Soffa

4523

Gold and aluminum

Temperature and humidity chamber

Angelantoni

CH250C

Capacity: 224 liters.

Temp.: -40º – 180º Humidity: 10% – 98%

Vector network analyzer

Agilent

E8361A

Two ports

Up to 67 GHz

Vector network analyzer

Rohde&Schwarz

ZVA24

Four ports

Up to 24 GHz

Signal generator PSG

Agilent

E8257D

Up to 20 GHz

Signal generator   PSG CW

Agilent

E8247C

Up to 40 GHz

Spectrum analyzer

Agilent

E4445A

Up to 13 GHz

Spectrum analyzer

Agilent

E4448A

Up to 50 GHz

Portable spectrum analyzer

Rohde&Schwarz

FSH6

Up to 6 GHz

Oscilloscope

Agilent

Infiniium DSO 81004

Up to 10 GHz

Pulse generator

Picosecond

10,050 A

Response time: 45 ps Amplitude: 10 V

Pulses 100 ps – 10 ns

Power supply

Agilent

N6700B

4 slots

400 W

Dual power supplies  

Agilent

E3648A

100 W

Dual power supplies

Agilent

E3646A

60 W

Anechoic chamber

ETL-LINDGREN

S501

0.7-18 GHz

Horn reference antennas

ETS-LINDGREN

3160-0x

0.96-18 GHz

Dual polarization wideband horn antenna

ETS-LINDGREN

3164-04

0.7-6 GHz

Dual polarization wideband horn antenna

ETS-LINDGREN

3164-05

2-18 GHz

Prototyping machine

LPKF

C100HF

CNC type machine

Prototyping machine

LPKF

ProtoMat S100

Laser based machine

Inkjet 2D printer

FujiFilm

Dimatix

Material printer

SLA 3D printer

Monoprinter

Monoprinter2

3D resin printer

Spectrometer

NanoSPR

NanoSPR7

650 nm wavelength

 

 

v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}

Normal
0
false

false
false
false

ES
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:”";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:”Calibri”,sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:”Times New Roman”;
mso-bidi-theme-font:minor-bidi;
mso-ansi-language:ES;
mso-fareast-language:EN-US;}
table.MsoTableGrid
{mso-style-name:”Table Grid”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-priority:39;
mso-style-unhide:no;
border:solid windowtext 1.0pt;
mso-border-alt:solid windowtext .5pt;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-border-insideh:.5pt solid windowtext;
mso-border-insidev:.5pt solid windowtext;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:”Calibri”,sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:”Times New Roman”;
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}